p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.2SD16, C4.8C4≀C2, (C2×C4).2D8, (C2×C8).22D4, C4.Q8.2C4, (C2×Q16).4C4, C4.4(C23⋊C4), C8.D4.2C2, C23.C8.5C2, (C22×C4).30D4, C4.10C42.1C2, C2.7(C22.SD16), (C2×M4(2)).4C22, C22.16(D4⋊C4), (C2×C8).4(C2×C4), (C2×C4).55(C22⋊C4), SmallGroup(128,74)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.2SD16
G = < a,b,c,d,e | a2=b2=c2=1, d8=e2=c, dad-1=eae-1=ab=ba, ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=abcd3 >
Character table of C23.2SD16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 16 | 16 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | i | i | -i | 1 | -i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -i | -i | i | 1 | i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | i | i | -i | 1 | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -i | -i | i | 1 | i | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ13 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | -1-i | 1+i | -1+i | 0 | 1-i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ14 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 1-i | -1+i | 1+i | 0 | -1-i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ15 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ16 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | -1+i | 1-i | -1-i | 0 | 1+i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ18 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 1+i | -1-i | 1-i | 0 | -1+i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ19 | 4 | 4 | -4 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ20 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 30)(2 23)(3 24)(4 17)(5 18)(6 27)(7 28)(8 21)(9 22)(10 31)(11 32)(12 25)(13 26)(14 19)(15 20)(16 29)
(1 9)(3 11)(5 13)(7 15)(18 26)(20 28)(22 30)(24 32)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 18 9 26)(2 8 10 16)(3 32 11 24)(4 14 12 6)(5 30 13 22)(7 28 15 20)(17 19 25 27)(21 31 29 23)
G:=sub<Sym(32)| (1,30)(2,23)(3,24)(4,17)(5,18)(6,27)(7,28)(8,21)(9,22)(10,31)(11,32)(12,25)(13,26)(14,19)(15,20)(16,29), (1,9)(3,11)(5,13)(7,15)(18,26)(20,28)(22,30)(24,32), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,18,9,26)(2,8,10,16)(3,32,11,24)(4,14,12,6)(5,30,13,22)(7,28,15,20)(17,19,25,27)(21,31,29,23)>;
G:=Group( (1,30)(2,23)(3,24)(4,17)(5,18)(6,27)(7,28)(8,21)(9,22)(10,31)(11,32)(12,25)(13,26)(14,19)(15,20)(16,29), (1,9)(3,11)(5,13)(7,15)(18,26)(20,28)(22,30)(24,32), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,18,9,26)(2,8,10,16)(3,32,11,24)(4,14,12,6)(5,30,13,22)(7,28,15,20)(17,19,25,27)(21,31,29,23) );
G=PermutationGroup([[(1,30),(2,23),(3,24),(4,17),(5,18),(6,27),(7,28),(8,21),(9,22),(10,31),(11,32),(12,25),(13,26),(14,19),(15,20),(16,29)], [(1,9),(3,11),(5,13),(7,15),(18,26),(20,28),(22,30),(24,32)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,18,9,26),(2,8,10,16),(3,32,11,24),(4,14,12,6),(5,30,13,22),(7,28,15,20),(17,19,25,27),(21,31,29,23)]])
Matrix representation of C23.2SD16 ►in GL8(𝔽17)
1 | 0 | 0 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
15 | 0 | 14 | 2 | 0 | 0 | 0 | 16 |
0 | 9 | 8 | 1 | 0 | 0 | 1 | 0 |
0 | 9 | 8 | 1 | 0 | 1 | 0 | 0 |
15 | 0 | 14 | 2 | 16 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
2 | 7 | 13 | 13 | 1 | 0 | 0 | 0 |
14 | 9 | 4 | 4 | 0 | 1 | 0 | 0 |
14 | 9 | 4 | 4 | 0 | 0 | 1 | 0 |
2 | 7 | 13 | 13 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
14 | 9 | 4 | 4 | 0 | 0 | 2 | 0 |
15 | 10 | 4 | 4 | 0 | 0 | 0 | 15 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 16 | 1 | 0 |
2 | 15 | 13 | 2 | 2 | 15 | 0 | 5 |
1 | 16 | 8 | 8 | 15 | 2 | 1 | 11 |
8 | 16 | 9 | 1 | 15 | 2 | 1 | 11 |
2 | 16 | 12 | 12 | 2 | 15 | 0 | 5 |
0 | 16 | 2 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
13 | 8 | 11 | 16 | 14 | 3 | 4 | 13 |
13 | 16 | 1 | 11 | 3 | 3 | 13 | 13 |
15 | 6 | 14 | 7 | 4 | 13 | 3 | 14 |
0 | 13 | 0 | 5 | 13 | 13 | 14 | 14 |
G:=sub<GL(8,GF(17))| [1,0,0,0,15,0,0,15,0,16,0,0,0,9,9,0,0,2,1,0,14,8,8,14,15,0,0,16,2,1,1,2,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0],[16,0,0,0,2,14,14,2,0,16,0,0,7,9,9,7,0,0,16,0,13,4,4,13,0,0,0,16,13,4,4,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[14,15,0,0,2,1,8,2,9,10,0,0,15,16,16,16,4,4,0,0,13,8,9,12,4,4,0,0,2,8,1,12,0,0,1,0,2,15,15,2,0,0,0,16,15,2,2,15,2,0,0,1,0,1,1,0,0,15,16,0,5,11,11,5],[0,1,0,0,13,13,15,0,16,0,0,0,8,16,6,13,2,0,0,1,11,1,14,0,0,15,16,0,16,11,7,5,0,0,0,0,14,3,4,13,0,0,0,0,3,3,13,13,0,0,0,0,4,13,3,14,0,0,0,0,13,13,14,14] >;
C23.2SD16 in GAP, Magma, Sage, TeX
C_2^3._2{\rm SD}_{16}
% in TeX
G:=Group("C2^3.2SD16");
// GroupNames label
G:=SmallGroup(128,74);
// by ID
G=gap.SmallGroup(128,74);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,456,422,387,520,1690,521,248,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*b*c*d^3>;
// generators/relations
Export
Subgroup lattice of C23.2SD16 in TeX
Character table of C23.2SD16 in TeX